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Associated directed graph of a relation

Suppose a set A comes equipped with a relation R. We can associate a
directed graph (aka a digraph) with vertex set A and with an ordered pair
(a, b) 2 A ⇥ A being an edge precisely when aRb.

Exercise
Express the conditions of reflexivity, transitivity, symmetry, antisymmetry, and

totality in terms of familiar connectivity conditions on the associated graph.
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Exercise
If the following graphs are the associated graphs of certain relations, what

facts about those relations can we infer?



Exercise (Partial order on a power
set)
There is a partial order on a power set P(X )
of a set X given by the subset relation:

Check that all the axioms of partial order are

satisfied.

Show that this partial order is not total.

{x , y , z}

{x , y} {x , z} {y , z}

{x} {y} {z}

;



In fact we can recover the partial order of P(X ) simply from the intersection
(or equivalently the union) operation.

For subsets A, B of X , define

A 6 B () A \ B = A

Exercise
Show that 6 is a partial order relation, and it agrees with the subset relation.
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Definition
A non-empty partially ordered set (S,6) is filtered (or is said to be a filtered

set) if for each a, b 2 S, there is a element c such that a 6 c and b 6 c.

Remark
Every total order is a filtered.

Example
The powerset P(X ) with the subset relation is filtered.

Exercise
Show that for a poset P the set of filtered subsets of P is again filtered.
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Minimum and maximum

Definition
We say an element a of a poset P is a minimum (aka a least element) for P

if it is less than or equal to any other element, that is

8x 2 P (a 6 x)

Dually, we say an element a of a poset P is a maximum (aka a greatest

element) for P if it is greater than or equal to any other element, that is

8x 2 P (x 6 a)



Minimum and maximum

Definition
We say an element a of a poset P is a minimum (aka a least element) for P

if it is less than or equal to any other element, that is

8x 2 P (a 6 x)

Dually, we say an element a of a poset P is a maximum (aka a greatest

element) for P if it is greater than or equal to any other element, that is
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Example
• In (N,6), 0 is a minimum; there is no maximum.

• Let n 2 N with n > 0. Then 0 is a least element of (n,6), and n � 1 is a

greatest element.

• (Z,6) has no maximum or minimum.

• The interval ((0, 1],6) has a maximum but not a minimum.



Definition
We say that an element is minimal for a partial order if no element is less

than it. Dually, we say that an element is maximal for a partial order if no

element is greater than it.

Example
Recall for a set X , we formed the set of all inhabited subsets of X as follows

P+(X ) =def P(X ) \ {;}

(P+(X ),✓) is again a poset where the order is given by given by the subset

relation. In this poset, every singleton is minimal but not a minimum if X has

more than one element. The maximal element X is also a maximum.
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Proposition
In every poset any maximum (resp. minimum) is a maximal (resp. minimal)

element.



Our logical idea of function

A function f from a set X to a set Y is a specification of a unique element
f (x) 2 Y for each x 2 X .

We write f : X ! Y to denote the assertion that f is
a function with domain X and codomain Y .

To describe a particular function, one must specify
• its domain,
• its codomain, and
• the effect of function upon a typical (“variable”) element of its domain.

For instance the “squaring” function on the set of real numbers is specified in
either of the following ways:

1 f : R ! R where f (x) = x2 for every real number x , or

2 x 7! x2 : R ! R,

3 �(x : R).x2 : R ! R.
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How to define a function? (I)
The simplest way to define a function is to give its value at every x with an
explicit well-defined expression.

Example
• Let f : N ! N be the function defined by f = �(n : N).n + 1.

• Let g : R⇥ R ! R be the function defined by g(x , y ) = x2 + y2.

• Let p : N ! N be the function defined by p(n) = the largest prime

number less than or equal to n.

• The assignment to each real number the greatest integer less than or

equal to it. We call this function the floor function. We denote this

function by b�c : R ! Z.

• The assignment to each real number the least integer greater than or

equal to it. We call this function the ceiling function. We denote this

function by d�e : R ! Z.



Some functions on power sets

Example
• �(x : X ).{x} : X ! P(X ). We sometimes denote this function by {�}.

• �(A : PP(X )).
[

a2A

a : P(P(X )) ! P(X ).



How to define a function? (II)
It is sometimes convenient to define a function using different specifications
for different elements of the domain.

Example
The absolute value function |�| : R ! R, defined for x 2 R

|x | =

8
<

:
x if x > 0

�x if x 6 0

When specifying a function f : X ! Y by cases, it is important that the
conditions be:
• exhaustive: given x 2 X , at least one of the conditions on X must hold;

and
• compatible: if any x 2 X satisfies more than one condition, the specified

value must be the same no matter which condition is picked.
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Characteristic functions

Definition

Let X be a set and let U ✓ X. The characteristic function of U in X is the

function �U : X ! {0, 1} defined by

�U(a) =

8
<

:
1 if a 2 U

0 if a 62 U
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Example
�E : N ! {0, 1} is the function

defined by

�E (n) =

(
0 if n is even

1 if n is odd.

�Q : R ! {0, 1} is the function

defined by

�Q(x) =

(
0 if x is rational

1 if x is irrational.

Try to draw the graph of the second function, or at least try to imagine it in
your mind.
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Exercise
Show that

1 �
U\V

= �
U
�

V

2 �
U\V

= �
U

+ �
V
� �

U
�

V

3 �
Uc = 1 � �

U



Our mechanistic idea of function

Functions as machines

We might think of a function as a machine which, when given an input,
produces an output. This “machine” is defined by saying what the possible
inputs and outputs are, and then providing a list of instructions (an algorithm)
for the machine to follow, which on any input produces an output—and,
moreover, if fed the same input, the machine always produces the same
output.



Warning
Our algorithmic idea of function implies that functions are computable in

some sense. Note that this idea is at odds with a view of functions as

well-formed logical expressions.

For example, concerning the characteristic function �Q, it is not at all clear

what it means to be presented with a real number as input, let alone whether

it is possible to determine, algorithmically, whether such a number is rational

or not.

It is much harder to make formal what is
meant by an “algorithm”. This was first done
by Alan Turing and Alonzo Church.



Equality of functions

Definition (function extensionality)
Functions f : X ! Y and g : X ! Y are equal if and only if the sentence

8x 2 X
�
f (x) = g(x)

�

is true.

Exercise
Show that for any set A there is a unique function ; ! A.



Compositionality of functions
For any set X , we can define a function id : X ! X by letting id(x) to be the
same as x .

This function is called the identity function on X .

More interestingly, let f : X ! Y and g : Y ! Z be functions. We can define
a new function k : X ! Z by letting

k (x) =def g(f (x))

The function k is called the composition of f and g which we also call “f
composed with g” (or “g after f ”) and which we denote by g � f .

Y

X Z

g

g�f

f

Proof and the Art of Mathematics by J.D. Hamkins
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The order of composition

The order of composition is somewhat confusing; the syntactic order does
not match the diagrammatic order. In the diagram above, f appears to the
left of g while in the syntactic expression of composition g � f , the function f

appears appears on the right.
Nevertheless, they both mean the same thing: in order to evaluate the
expression g(f (x)) you first evaluate f on input x , and then evaluate g. The
function g waits for the the result f (x) of application of f to the input x and
once that is available, g applies to the value f (x).



f
X

x

Y

f (x)

y

g
Z

g
�
f (x)

�

g(y )

�y .g(y ) � �x .f (x) = �x .g [f (x)/y ]

�y .log2y � �x .2x = �x .log2y [2x/y ] = log22x = x
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Z
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The composition of function introduced above has two important
properties:

unitality for any function f : X ! Y , we have f � idX = f and idY �f = f .
associativity for any functions f : W ! X , g : X ! Y and h : Y ! Z , we have

h � (g � f ) = (h � g) � f .



Constant functions

Definition
We say a function f : X ! Y is constant if for all x , x 0 2 X we have

f (x) = f (x 0).

Exercise
Show that the identity function id : ; ! ; is constant.

Exercise
Suppose f : X ! Y and g : Y ! Z are functions. Show that if either f or g is

constant then the composition g � f is constant.
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Commuting diagrams of functions

We say a square
A B

C D

f

g

k

h

of sets and functions commutes if

g � f � h = k



Commuting diagrams of functions

We say a square
A B

C D

f

h g

k

of sets and functions commutes if

g � f = k � h



Functions and relations

Functions can be seen as a special kind of relations.

Definition
A binary relation R(x , y ) on A and B is functional if for every x in A there

exists a unique y in B such that R(x , y ). We can express this formally by the

following sentence

�
8x9yR(x , y )

�
^
�
8x8y8z(R(x , y ) ^ R(x , z) ) y = z)

�

If R is a functional relation, we can define a function fR : X ! Y by setting

fR(x) to be equal to the unique y in B such that R(x , y ). Conversely, it is not

hard to see that if f : X ! Y is any function, the relation Rf (x , y ) defined by

f (x) = y is a functional relation.
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For any function f : X ! Y , we define as subset of X ⇥ Y known as the
graph of f .

Gr(f ) = {(x , y ) | f (x) = y}

Define functions h, i , and p as follows:

h = �x .(x , f (x)) (1)

i = �(x , y ).(x , y ) (2)

p = �(x , y ).y (3)

Exercise
Show that the functions f , h, i , and p fit into the following square of sets and

functions commutes:

Gr(f ) X ⇥ Y

X Y

i

p

f

h



Composition of relations
Given a relation R on X and Y and a relation S on Y and Z we can
compose them to get a relation S � R on X and Z defined as follows:

x(S � R)z () 9y 2 Y (xRy ^ yRz)

Exercise
Let B be the “brothership” relation (xBy means x is a brother of y) and S be

the “sistership” relation. Show that the composite relation S � B is not

equivalent to B.

Exercise
• Prove that if both R and S are partial orders then S � R is a partial order.

• Prove that if both R and S are equivalence relations then S � R is an

equivalence relation.



Exercise
Show that for any equivalence relation R on a set X we have

1 R � R = R.

2 R � R � ... � R = R



Composition of functions from compositions of relations

Theorem
Suppose f : X ! Y and g : Y ! Z are functions. Consider the

corresponding relations Rf and Rg. The relation corresponding to the

composite function g � f is equivalent to the composite relations Rg � Rf , that

is,

8x 2 X8z 2 Z
�
x Rg�f z () x (Rg � Rf ) z

�



Isomorphisms of sets

Definition
An isomorphism between two sets X and Y is a pair of function

f : X ! Y and g : Y ! X

such that g � f = idX , and f � g = idY .

We can think of functions f and g above as no data-loss “processes”, e.g.
conversion of files to different format without data being lost.

Definition
The sets X and Y are said to be isomorphic in case there exists an

isomorphism between them. In this case, we use the notation X ⇠= Y.
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An isomorphism between two sets X and Y is a pair of function

f : X ! Y and g : Y ! X

such that g � f = idX , and f � g = idY .

We can think of functions f and g above as no data-loss “processes”, e.g.
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Exercise
Show that for any set A, it is isomorphic to ; if and only if A does not have

any elements. Can you prove this without the LEM?



Previously, we defined the cartesian product A ⇥ B of two sets A and B to
consists of all the pairs (a, b) where a 2 A and b 2 B. Now, we show that if
we have more two sets the order of forming products does not matter.

Exercise
1 For all sets A, B, C we have

(A ⇥ B) ⇥ C ⇠= (A ⇥ B) ⇥ C

For this reason, we use A ⇥ B ⇥ C to denote either sets.



Exercise
Show that two finite sets are isomorphic if and only if they have the same

number of elements.



Exercise
Show that for any function f : X ! Y, we have

Gr(f ) ⇠= X .



A remark on disjoint unions
We introduced the operation of taking disjoint union of two sets as follows:

A t B = {inl(x) | x 2 A} [ {inr(x) | x 2 B}

Exercise
Show that

A t B ⇠= ({0}⇥ A) [ ({1}⇥ B)

Inspired by this fact we define the disjoint union of a family {Ai | i 2 I} of sets
to be G

i2I

Ai =
[

i2I

{i}⇥ Ai .

An element of
G

i2I

Ai is a pair (i , a) where i 2 I and a 2 Ai .
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Inverse of a relation

We can always define an inverse to a relation:

Definition
For a relation R on X and Y we define the inverse of R to be a relation R�1

on Y and X defined by

yR
�1

x , xRy

Exercise
Show that if a relation R is functional then it is not necessarily the case that

R�1 is functional.



Arithmetic of sets

We define the operation of addition on sets as follows: For sets X and Y let
the sum X + Y be defined by their disjoint union X t Y .

Exercise
1 Show that the addition operation on sets is both commutative and

associative.

2 Show that the empty set is the unit (aka neutral element) of addition of

sets.

Exercise
Show that m + n ⇠= m + n for all natural numbers m and n.



Exercise
1 Show that if S and S0 are isomorphic, then for all sets X, we have

X + S ⇠= X + S0.

2 Prove that for any singleton S, we have N + S ⇠= N.

Sometimes, when the context precludes risk of confusion, we use the
notation 1 for any singleton set. Therefore, we can simplify the last
statement in above to

N + 1 ⇠= N.



Definition
• A retract (aka left inverse) of function f : A ! B is a morphism r : B ! A

such that r � f = idA. In this case we also say A is a retract of B.

• A section (aka right inverse) of function f : A ! B is a morphism

s : B ! A such that f � s = idB.

A A

B B

f

idA

idB

s

r

Example
• The circle is a retract of punctured disk.

• The maps from the infinite helix to the circle has a section, but no

continuous section.



Injections

Definition
A function f : X ! Y is injective (or one-to-one) if

8a, b 2 X , f (a) = f (b) ) a = b

An injective function is said to be an injection.



Surjections

Definition
A function f : X ! Y is surjective (aka onto) if

8y 2 Y , 9x 2 X , f (x) = y

holds. A surjective function is said to be a surjection.



Proposition
1 A function with a retract is injective.

2 A function with a section is surjective.



Injection and retracts

Does every injection have a retract?



Injection and retracts

No. Consider the function ; ! 1.



Injection and retracts

Proposition
Let f : X ! Y be a function. If f is injective and X is inhabited, then f has a

retract.



Injection and retracts
Proof.
Suppose that f is injective and X is inhabited. Since X is inhabited, we get
always fix an element of it, say x0 2 X . Now, define r : Y ! X as follows.

r (y ) =

8
<

:
x if y = f (x) for some x 2 X

x0 otherwise

Note that r is well-defined since if for some y , the there are elements x and
x 0 such that y = f (x) = f (x 0), then, by injectivity of f , we have x = x 0, and
therefore, the value of r is uniquely determined.
To see that r is a retract of f , let x 2 X . Letting y = f (x), we see that y falls
into the first case in the specification of r , so that r (f (x)) = g(y ) = a for some
a 2 X for which y = f (a). But, f (x) = y = f (a), and by injectivity of f we have
x = a. Therefore, for every x 2 X , r (f (x)) = x = idX (x) . By function
extensionality, r � f = idX .



Injection and retracts

Was this proof constructive?



Suppose f : A ! B and g : Y ! X are functions. We say that f is (left)
orthogonal to g (and, equivalently, g is right orthogonal to f ) if for any two
functions x , y which make the square

A Y

B X

y

f p

x

commute (i.e. p � y = x � f ), there is a function d : B ! Y which makes both
triangles commute

A Y

B X

y

f p

x

d

,

i.e.
p � d = x and d � f = y



Proposition
• Any map right orthogonal to 2 ! 1 is injective.

• Any map right orthogonal to ; ! 1 is surjective.



A function f : X ! Y induces a function

f⇤ : P(X ) ! P(Y )

defined by
f⇤(U) = {y 2 Y | 9x 2 U (y = f (x))}

for any subset U of X .

The subset f⇤(S) is called the image of U under f .
Note that

id⇤ = idP(X )

Proposition
Show that a function f : X ! Y is surjective if and only if f⇤(X ) = Y.

We sometimes denote the set f⇤(X ) by Im(f ).
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Suppose f : X ! Y and g : Y ! Z are functions. We prove that

g⇤ � f⇤ = (g � f )⇤ .

Recall that in order to prove equality of functions we need to use function
extensionality.

Suppose T is a subset of Z . Then

(g⇤ � f⇤) U = g⇤ {y 2 Y | 9x 2 U (y = f (x))}
=
�

z 2 Z | 9y 2 Y 9x 2 U (y = f (x) ^ z = g(y )
 

= {z 2 Z | 9x 2 U (z = g(f (x)))}
= (g � f )⇤U
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Pre-images

A function f : X ! Y induces a function

f
�1 : P(Y ) ! P(X )

defined by
f
�1(S) = {x 2 X | f (x) 2 S}

for any subset S of Y .

The subset f�1(S) is called the pre-image of S under f .
Note that

id�1
X

= idP(X )
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Injections and subsingletons

Definition
A set U is said to be a subsingleton if it is a subset of the one-element set 1.

Proposition
A function f : X ! Y is injective if and only if for every y 2 Y the fibres f�1(y )
are all subsingletons.



Injections and subsingletons

Definition
A set U is said to be a subsingleton if it is a subset of the one-element set 1.

Proposition
A function f : X ! Y is injective if and only if for every y 2 Y the fibres f�1(y )
are all subsingletons.



Example of isomorphism: infinite binary number

We define an infinite binary number to be an infinite sequence of binary
digits (each 0 or 1).

Consider the set B1 of infinite binary numbers.
Define a function

↵ : B1 ! [0, 1]

by

↵(x0x1 ... xi ...) =
1X

i=0

xi 2�(i+1)

Exercise
1 Show that this function is not injective by considering the fibre ↵�1(1/2).

2 What is the fibre ↵�1(1/3)?
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B1 has an interesting subset B+
1 consisting of all monotone infinite binary

numbers, that is the sequences x = x0x1 ... with the property that

8i 2 N
�
9j 2 N (j 6 i ^ xj = 1) ) xi = 1

�

Proposition
Show that the set B+

1 is isomorphic to the set N1 = {0, 1, 2, ... ,1} of

extended natural numbers.
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Proof.
Assign to every sequence the least i where xi = 1, and 1 if such i does not
exist (i.e. when the sequence consists only of 0s). Clearly this assignment is
well-defined and therefore defines a function f : B+

1 ! N1.

Assign to a
natural number n the sequence consisting of n copies of 0 followed by 1s,
and assign to 1 the sequence consisting only of 0s. Clearly this assignment
is well-defined and therefore defines a function g : N1 ! B+

1. We now show
that f and g are inverses of each other: Let n be a natural number.
f (g(n)) = n since n is the earliest place where 1 appears in the sequence
g(n). Also, for a monotone x0x1 ... xn ..., suppose f (x0x1 ... xn ...) = i . Hence,
x0x1 ... xi�1xixi+1 ... = 00 ... 011 ... where the first 1 appears at digit i .
Therefore g(f (x0x1 ... xn ...)) = g(i) = 00 ... 011 ... = x0x1 ... xi ... . Additionally,
f (g(1)) = 1 and g(f (00 ... 0 ...)) = 00 ... 0 .... Therefore, f and g are inverse
of each other and together they establish an isomorphism B+

1
⇠= N.
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Let’s define a function



Suppose f : X ! Y and g : Y ! Z are functions. We prove that

f
�1 � g

�1 = (g � f )�1 .

Recall that in order to prove equality of functions we need to use function
extensionality.

Suppose T is a subset of Z . Then

(f�1 � g
�1)T = f

�1 {y 2 Y | g(y ) 2 T}
=
�

x 2 X | f (x) 2 {y 2 Y | g(y ) 2 T}
 

= {x 2 X | g(f (x)) 2 T}
= (g � f )�1

T



Suppose f : X ! Y and g : Y ! Z are functions. We prove that

f
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Fibres

Definition
For a function f : X ! Y, and an element y 2 Y, the subset

f
�1(y ) = {x 2 X | f (x) = y}

of X is called the fibre of f at y and also the pre-image of y under f .

Although, technically incorrect, people write f�1(y ) instead of f�1({y}).

Example
Consider the function b�c : R ! Z which takes a real number to the greatest

integer less than it. What are the fibres

• b�c�1(0)?
• b�c�1(b⇡c)?



The operation of taking fibres of a function is itself a function. More
specifically, given a function f , taking fibres of f at different elements y 2 Y

as a function is equal to the composite

Y
{�}��! P(Y ) f�1

��! P(X ) ,

that is for all y 2 Y ,
f
�1(y ) = f

�1{y}

Exercise
Consider the family {f�1(y ) | y 2 Y}. Show that all members of this family

are mutually disjoint, and that their union is fact X .

G

y2Y

f
�1(y ) ⇠=

[

y2Y

f
�1(y ) = X
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As the last exercise suggests, we can associate to every function a family of
sets given by fibres of that function at different elements of the codomain.

Interestingly, we also have the converse association: to a family {Yx | x 2 X}
we associate a function as follows: let the domain to be the disjoint unionG

x2X

Yx and let the codomain be X . The associated function

p : {Yx | x 2 X} ! X takes an element in(x) 2
G

x2X

Yx to x 2 X .

functions families of sets

T =def taking fibres

U =def taking union

Y

X

{Yx | x 2 X}f
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The set of functions

Suppose X and Y are sets. We can define a new set consisting of all the
functions from X to Y . We denote this set by Y X . Explicitly,

Y
X = {f : X ! Y} ⇠= {R ⇢ X ⇥ Y | R is a functional relation}



Exercise
Suppose X is a finite set with m elements and Suppose Y is a finite set with

n elements. Then the set Y X has nm elements.



The set of functions behaves like exponentials

Proposition
Suppose X , Y , Z are sets. We have

• X ; ⇠= 1
• ;X ⇠= 1 if and only if X = ;. In particular ;; ⇠= 1.

• (X Y )Z ⇠= X Y⇥Z .

• X Y +Z ⇠= X Y ⇥ X Z



Let 2 =def 1 + 1 be a set with two elements. We show that

2X ⇠= P(X ) ,

that is the power set of X is isomorphic to the set of functions from X to 2.

To this end we construct two functions f and g and prove that they are
inverse of each other.
The function f : 2X ! P(X ) is defined as �(' : 2X ).{x 2 X | '(x) = >}.
The function g : P(X ) ! 2X is defined as �(S : P(X )).�S where we recall that
�S is the characteristic function of S ✓ X .
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�S is the characteristic function of S ✓ X .



Dependent product of sets

Let {Xi | i 2 I} be a family of sets.

Define the set
Q

i2I
Xi to be

{h : I !
[

i2I

Xi | 8i (h(i) 2 Xi)}

Note that if I is a finite set, say I = {1, 2, · · · , n} then
Y

i2I

Xi
⇠= X1 ⇥ X2 ⇥ · · ·⇥ Xn

In case where I is a finite set, if each Xi is inhabited then the cartesian
product

Q
i2I

Xi is also inhabited. But we cannot prove this for a general I.
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Some examples of dependent products

Example
Consider the family {X0, X1} where X0 is is the singleton set 1 and X1. The

dependent product
Q

i22 Xi is isomorphic to X1.

Example
Consider the family {X0, X1} where X0 is is the empty set 1 and X1. The

dependent product
Q

i22 Xi is empty.

Example
Let A be a set and consider the family {Xi}i2I where Xi = A for all i 2 I.

Y

i2I

Xi = A
I
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Dependent product and sections

Let p : Y ! X be a function. Consider the associated family {Yx | x 2 X}.

Proposition
The set

Q
x2X

Yx is in bijection with the set of the sections of the function

p : Y ! X.



Dependent product of families of sets along families of sets

Suppose {Yj | j 2 J} is a family and {Ji | i 2 I} another family and J =
[

i2I

Ji .

We can form a new family {
Q

j2Ji
Yj | i 2 I}.

Example
Let {Fn | n 2 N} be a family over natural numbers. Let

{Em,n | (m, n) 2 N⇥ N} another family over the indexing set N⇥ N, where

Em,n =def

8
<

:
{m} if m = n

; otherwise

The dependent product
�Q

k2E(m,n) Fk | (m, n) 2 N⇥ N
 

is a family

{Gm,n | m 2 N, n 2 N} such that G(n,n) = Fn and G(m,n) = {⇤} when m 6= n.
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Axiom of choice

Axiom of Choice (AC) asserts that the set
Q

i2I
Xi is inhabited for any

indexing set I and any family (Xi | i 2 I) of inhabited sets.



Warning
The axiom of choice is highly non-constructive: if a proof of a result that does

not use the axiom of choice is available, it usually provides more information

than a proof of the same result that does use the axiom of choice.



Logical incarnation of Axiom of Choice

Proposition
The axiom of choice is equivalent to the statement that for any sets X and Y

and any formula p(x , y ) with free variables x 2 X and y 2 Y, the sentence

8x 2 X 9y 2 Y p(x , y ) ) 9(f : X ! Y ) 8x 2 X , p(x , f (x)) (4)

holds.



Proof. Assume axiom of choice. Let X and Y be arbitrary sets and p(x , y )
any formula with free variables x 2 X and y 2 Y . For each x 2 X , define
Yx = {y 2 Y | p(x , y )}. Note that Yx is inhabited for each x 2 X by the
assumption 8x 2 X , 9y 2 Y , p(x , y ). By the axiom of choice there exists a
function h : X !

[

x2X

Yx such that h(x) 2 Yx for all x 2 X . We compose the

function h with the inclusion [x2X Yx ⇢ Y , which we get from the fact that
Yx ✓ Y for each x 2 X , to obtain a function f : X ! Y . But then
p(x , f (x)) = p(x , h(x)) is true for each x 2 X by definition of the sets Yx .



Conversely, suppose that we have a family (Xi | i 2 I) of inhabited sets.
Consider the cartesian product

Q
i2I

Xi . We want to show that this product is
inhabited. Define

p(i , x) =def (x 2 Xi)

Now, we apply the sentence (4) to the sets I,
[

i2I

Xi and the formula p(i , x)

just defined: we find a function f : I !
[

i2I

Xi such that p(i , f (i)) for all i 2 I.

But, by definition of p(i , x), we conclude that f (i) 2 Xi for all i 2 I. Hence, f is
a member of

Q
i2I

Xi .



Axiom of Choice and surjections

Given a function p : Y ! X , consider the associated family {Yx | x 2 X} of
sets obtained by taking fibres of p at different elements of x .
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Given a function p : Y ! X , consider the associated family {Yx | x 2 X} of
sets obtained by taking fibres of p at different elements of x .
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Lemma
An element of

Q
x2X

Yx is the same thing as a section of p : Y ! X.
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Proposition
Axiom of choice is equivalent to the statement that every surjection has a

section.

Proof.
Assume AC. Let p : Y ! X be a surjection. Therefore all the fibres Yx are
inhabited. By AC, the product

Q
x2X

Yx is inhabited. Hence, by the last
lemma above, p has a section.



Axiom of Choice and surjections

Proposition
Axiom of choice is equivalent to the statement that every surjection has a

section.

Proof.
Conversely, suppose that every surjection has a section. Let {Yx | x 2 X} be
family of sets where the set Yx is inhabited for every x 2 X . Consider the
associated function tx2X Yx ! X . Note that this map is surjective by our
assumption and the first lemma above. Hence, it has a section which is the
same thing as an element of

Q
x2X

Yx . Therefore AC holds.



Theorem (Diaconescu, Goodman-Myhill)
The axiom of choice implies the law of excluded middle.

Proof.



Cantors’ theorem: A < P(A)

Lemma
If a function � : A ! BA is surjective then every function f : B ! B has a

fixed point.

Proof.
Because � is a surjection, there is a 2 A such that �(a) = �x : A . f (�(x)(x)),
but then �(a)(a) = f (�(a)(a).

Corollary
There is no surjection A ! P(A).



Let’s associate to each finite set X a number card(X ), called the “cardinality”
of X , which measures how many (distinct) elements the set X has. We then
have
• card(X + Y ) = card(X ) + card(Y ) and
• card(X ⇥ Y ) = card(X ) ⇥ card(Y ).

More generally, for any finite set I and a family of finite sets {Xi | i 2 I}, we
have
• card(

G

i2I

Xi) =
X

i2I

card(Xi) and

• card(
Q

i2I
Xi) =

Q
i2I

card(Xi)
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Questions


